BIOMIMETIC OXIDATION OF 21-HYDROXY, 21-FORMYL AND 21-CARBOXYLIC PREGN-4-EN-3,20-DIONE WITH CHEMICAL CYTOCHROME P450 MODEL SYSTEMS

S.M.S. Chauhan* and P.C. Ray
Department of Chemistry, University of Delhi, Delhi-110007, India

(Received 24 May 1991)

Abstract: The electron withdrawing 5, 10, 15, 20-tetra(2,6-dichlorophenyl) porphyrin iron(III) chloride [CbTPFe(III)Cl] and 5, 10, 15, 20-tetra(2,3,4,5,6-pentafluorophenyl) porphyrin iron(III) chloride [F_{20} TPFe(III)Cl] are more efficient catalysts than sterically hindered 5, 10, 15, 20-tetra(2,4,6-trimethylphenyl) porphyrin iron(III) chloride during the biomimetic oxidation of 21-hydroxypregn-4-en-3,20-dione with Cum00H in the presence of N-methylimidazole.

Cytochrome P450 model systems are currently used in selective hydroxylation and epoxidation in organic synthesis and oxidative metabolism of drugs and pesticides 1-5. Cytochrome P450 model systems consisting of iron(III) 5,10,15,20-tetraarylporphyrins [TAPFe(III)C1] and monooxygen donors form high valent iron(IV) oxoporphyrin radical cations 6,7 which are responsible for the hydroxylation^{1,2}, epoxidation⁴, C-C bond cleavage⁵ and other oxidation reactions8. The 21-hydroxypregn-4-en-3,20-dione (1) is hydroxylated at 11 and 18 positions by 118-hydroxylase and 18-hydroxylase respectively during its conversion to aldosterone in mitochondrial membrane9, whereas 1 is oxidized to 3-oxoandrost-4-en-17 /3 -carboxylic acid (4), pregn-4-en-3,20-dioxo-21-oic acid (3), 20-hydroxypregn-4-en-3-oxo-21-oic acid and other various non acidic products by human liver enzyme 10-13. The biomimetic oxidation with cumene hydroperoxide (CumOOH) catalyzed by sterically hindered and electron withdrawing 5,10,15,20-tetraarylporphyrin iron(III) chlorides in the presence of N-methylimidazole (MeNIm) is reported to understand the ring hydroxylation and side chain oxidation of 21-hydroxypregn-4-en-3,20-dione (1).

The oxidation of 21-hydroxypregn-4-en-3,20-dione (1) with CumOOH catalyzed by sterically hindered 5,10,15,20-tetra(2',4',6'-trimethylphenyl) porphyrin iron(III)chloride [Me₁₂TPPFe(III)Cl, (5a)] in dichloromethane at room temperature for 12 h gave pregn-4-en-3,20-dioxo-21-al (2), pregn-4-en-3,20-dioxo-21-oic acid (3) and 3-oxoandrost-4-en-17/5-carboxylic acid (4) in 2.0, 7.9 and 60.0% yields respectively (Table 1). The oxidation of 1 with CumOOH/Cl₈TPPFe(III)Cl/MeNIm gave 2, 3 and 4 in 0.5, 1.4 and 79.4% yield respectively. The oxidation products of 1 with other model systems are given in Scheme 1 and Table 1.

The reaction of $\underline{1}$ with CumOOH catalyzed by Cl₈TPPFe(III)Cl in dichloromethane gave $\underline{2}$ which was isolated by preparative TLC and characterized by different spectroscopic techniques 14 . Further, the formation of $\underline{2}$ was confirmed by preparation of the derivative $2-(3-\infty-pregn-4-en-17/9-y1)$ quinoxaline by reaction of $\underline{2}$ with ortho-phenylenediamine 15 .

TABLE-1
OXIDATION PRODUCTS OF 1 WITH DIFFERENT TAPFe(III)C1/CumOOH/MeNIm SYSTEMS

Experiment No.	Catalyst*	Substance	% Yield+		
			2	3	4
1.	Me ₁₂ TPPFe(III)Cl	<u>1</u>	2.0	7.9	60.0
2.	Cl ₈ TPPFe(III)Cl	<u>1</u>	0.5	1.4	79.2
3.	F ₂₀ TPPFe(III)Cl	<u>1</u>	1.8	0.4	82.3
4.	Cl ₈ TPPFe(III)Cl	<u>2</u>	-	6.1	29.1
5.	F ₂₀ TPPFe(III)Cl	<u>2</u>	_	1.5	76.0
6.	Cl ₈ TPPFe(III)Cl	<u>3</u>	-	-	83.0
7.	F ₂₀ TPPFe(III)Cl	<u>3</u>	-	-	84.0

^{*}Reaction conditions: Substrate (30 mmol): porphyrins : CumOOH : MeNIm in the ratio 100:1:25:10 and the reactions were carried out in dry dichloromethane (5.0 ml) at 25°C for 12 h.

^{*}Relative yields estimated by HPLC (with respect to oxidant used): HPLC conditions: Zorbax ODS column (reverse phase, 15 cm x 4 mm i.d.); acetonitrile solvent (0.4 ml/min.); UV detector (245 nm); retention times in min.: 1, 11.2; 2, 9.4; 3, 16.8 and 4, 12.7.

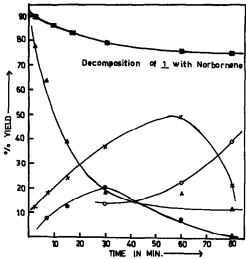


Fig. 1. Time dependent decomposition of $\underline{1}(-\Delta -)$ and formation of products $\underline{2}(-X-)$, $\underline{3}(-\bullet-)$, $\underline{4}(-\circ-)$ by using $\text{Cl}_8\text{TPPFe}(\text{III})\text{Cl/CumOOH/MeNIm}$ in dichloromethane.

The reaction of $\underline{1}$ with CumOOH catalyzed by $\underline{5a}$ gave $\underline{3}$ in 7.9% which was confirmed by comparing the HPLC retention time with that of authentic sample prepared from pregn-4-en-3,20-dioxo-21-al ($\underline{2}$) and their reaction with KCN followed by hydrolysis $\underline{^{16}}$. The formation of $\underline{4}$ was confirmed by comparing R_f values and HPLC retention time with those of authentic sample $\underline{^{17}}$ prepared by $\underline{^{18}}$.

The time dependent oxidation of $\underline{1}$ with Cl_8 TPPFe(III)Cl/CumOOH/MeNIm or F_{20} TPPFe(III)Cl/CumOOH/MeNIm (1:25:10) is given in Fig. 1 and Fig. 2

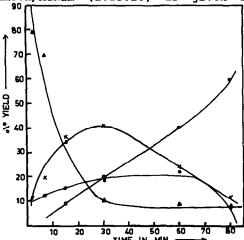


Fig. 2. Time dependent decomposition of $\underline{1}(-4-)$ and formation of products $\underline{2}(-X-)$, $\underline{3}(-e-)$ and $\underline{4}(-o-)$ by using \underline{F}_{20} TPPFe(III)Cl/CumOOH/MeNIm in dichloromethane.

respectively. The rate of decomposition of $\underline{1}$ is faster with F_{20} TPPFe(III)C1 than with Cl_8 TPPFe(III)C1 at room temperature due to high electron withdrawing nature of F_{20} TPPFe(III)C1. When norbornene was added to the above model systems the decomposition of $\underline{1}$ was suppressed and the formation of different oxidation products of $\underline{1}$ was reduced (Fig. 1).

Scheme 2

The reaction of TAPFe(III)Cl with CumOOH in the presence of N-methylimidazole produces high-valent oxo iron intermediates [(MeNImTAP)· $^+$ Fe^{IV}=0] ($^-$ 6) $^{19-22}$ which react with norbornene to form the corresponding epoxides $^{19-21}$. The initial oxidation of $^-$ 1 with $^-$ 6 forms the ketoaldehyde ($^-$ 2). The reaction of $^-$ 2 with $^-$ 6 gave $^-$ 3 and $^-$ 4 in 6.1 and 29.1% yield respectively. The hydrogen abstraction from $^-$ 2 by $^-$ 6 forms the radical species $^-$ 8, which on recombination with $^-$ 7 (MeNImTAPFe IV -OH) leads to keto carboxylic acid $^-$ 3 (Path Aa, Scheme 2). Similar hydrogen abstraction and recombination mechanism has been proposed during the oxidation of aldehydes of carboxylic acids by meta-chloroperbenzoic acid catalyzed by TAPFe(III)Cl 23 . The initial decarbonylation of $^-$ 8 followed by recombination with $^-$ 7 gave $^-$ 4 (Path Ab, Scheme 2). The formation of $^-$ 4 in high yield by $^-$ 5c as compared to $^-$ 5b indicates that path Ab is more favoured with

highly electron withdrawing F_{20} TPPFe(III)Cl ($\underline{5c}$) than Cl_8 TPPFe(III)Cl ($\underline{5b}$). The oxidation of $\underline{3}$ with CumOOH catalyzed by $\underline{5b}$ gave $\underline{4}$ in 83% yield (experiment No.6, Table 1). The reaction of $\underline{1}$ with CumOOH catalyzed by $\underline{5b}$ gave $\underline{4}$ in 79.2% (experiment No. 2 Table 1) whereas $\underline{4}$ is formed from $\underline{2}$ in 29.1% (experiment No. 4, Table 1) in similar conditions. This may be explained by formation of cyclic intermediate $\underline{9}$ by reaction of $\underline{1}$ with $\underline{6}$, followed by its spontaneous decomposition to form formaldehyde and $\underline{4}$ (Scheme 2, Path B).

Thus, the side chain oxidation of $\underline{1}$ occurs in high yields with CumOOII catalyzed by electron withdrawing 5,10,15,20-tetraarylporphyriniron(III) chlorides in dichloromethane in presence of N-methylimidazole than ring hydroxylation.

Acknowledgements:

This work is financially supported by Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR), New Delhi, India. PCR thanks CSIR for Senior Research Fellowship.

References and Notes

- 1. Mansuy, D. Pure. Appl. Chem. 1990, 62, 741.
- 2. Chauncey, M.A. and Ninomiya, S. Tetrahedron Lett. 1990, 31, 5901.
- 3. White, P.W. Bioorg. Chem. 1990, 18, 440.
- 4. Jorgenson, K.A. Chem. Rev. 1989, 89, 431.
- 5. Vijayarahavan, B. and Chauhan, S.M.S. <u>Tetrahedron Lett.</u>, 1990, 31, 6223.
- 6. Battioni, P.; Renaud, J.P.; Bartoli, J.F.; Reina-Artiles, M.; Eort, M. and Mansuy, D. J. Amer. Chem. Soc. 1988, 110, 8462.
- 7. Traylor, T.G. and Xu, F. J. Amer. Chem. Soc. 1990, 112, 178.
- 8. Labat, G.; Seris, J.L. and Meunier, B. <u>Angew. Chem. Int. Ed. Engl.</u>, 1990, 29, 1471.
- 9. Hall, P.F. Steroids, 1986, 48, 131.
- Ando, N.; Ando, S. and Yamakawa, T. <u>Biochem. Biophys. Acta</u>, 1979, 572, 325.
- Bradlow, H.L.; Zumoff, B.; Monder, C. and Hellman, L. J. Clin. Endocrinol. Metab. 1973, 37, 811.

- 12. Martins, K.O. and Monder, C. Biochemistry, 1976, 15, 576.
- 13. Marandici, A. and Monder C. Biochemistry, 1990, 29, 1147.
- 14. The m.p. of $\underline{2}$ 130-35°C (lit. 15 m.p. 136-40°C), UV(CH₂Cl₂): 244.0 nm ($\underline{\epsilon}$ mM, 2.8); IR(nujol): 3500, 1725, 1670, 1300, 987 and 850 cm⁻¹;

 1H NMR(CDCl₃): 0.8(s, 3H, 18-CH₃), 1.0(s, 3H, 19-CH₃), 1.1-2.3(m, 20H, skeletal-H), 5.3(s, 1H, 4-H) and 9.5(s, 1H, -CHO).
- Tokunaga, H.; Tanno, M. and Kimura, T. <u>Chem. Phar. Bull.</u> 1987, <u>35</u>, 1118.
- 16. Monder, C. Steroids, 1971, 18, 187.
- 17. The m.p. of $\underline{4}$ 245-50°C (lit m.p. 9 244-49°), UV(CH₂Cl₂): 244.5 nm ($\underbrace{\ell}$ mM, 1.8); IR(nujol): 3450, 1720, 1690, 1660, 1450, 1330, 870 and 680 cm⁻¹; $\frac{1}{1}$ H NMR (CDCl₃): 0.80(s, 3H, 18-CH₃), 1.05(s, 3H, 19-CH₃), 1.10-2.25(m, 20H, skeletal-H), 5.40(s, 1H, 4-H), 7.45[s, 1H, -COOH(exch)].
- 18. Mason, H.L.; Hoehn, W.M.; McKenzie, B.F. and Kendal, E.C. J. Biol. Chem., 1937, 120, 719.
- 19. Traylor, T.G. and Miksztal, A.R., <u>J. Amer. Chem. Soc.</u> 1989, <u>111</u>, 7443.
- 20. Traylor, T.G.; Fann, W-P. and Bandopadhyay, D. <u>J. Amer. Chem. Soc.</u> 1989, 111, 8009.
- 21. Makano, T.; Traylor, T.G. and Dolphin, D. Can. J. Chem. 1990, 68, 1504.
- 22. Bartoli, J.F.; Brigaud, O.; Battioni, P. and Mansuy, D. <u>J. Chem. Soc.</u>
 <a href="https://doi.org/10.1001/j.j.ph.1001/j.j.ph.1001/j.j.ph.1001/j
- Watanabe, Y.; Takehira, K.; Shimizu, M.; Hayakawa, T. and Orita, H.
 J. Chem. Soc. Chem. Commun. 1990, 927.